
www.embarcadero.com

Rock your Tests

with Mocks
Bernd Ua

Founder of probucon, Program Chair
Ekon and Embarcadero MVP

Bernd.Ua@probucon.de

https://embt.co/CodeRage2019

Overview

• Spring4D is a great open source framework to
leverage the power of Delphi. In this session we
will take a look a the mocking framework
contained in Spring4D. We will see how easy it
is, to get started with mocking and mock out
interfaces your classes under tests are using.

#CodeRage2019

Bernd Ua

What is mocking ?“

• If you are mocking out something you replace a productive
implementation with a special implementation for testing, the so
called mock

• You can write Mocks manually or use ones that have been
automatically created by frameworks

• The difference between mocks and stubs or dummies is some extra
code to log and check calls made to the mock

#CodeRage2019

What a Unittest should not do

• a Unit-Test should better not use
• Databases

• Network access

• File Systems

• External Ressources

• A configured Environment

• If your unit test uses one of the above it is more likely an
integration test

#CodeRage2019

Using Mocks in your Tests

• You can replace concrete access to databases/resources with
interfaces and mocks

• The number of classes that need to be tested with resources is
minimized, thereby increasing test performance

• Mocks can also be used to test scenarios that are difficult to
represent in reality

What characterizes a good unit test?

• It is clearly arranged
• Probably follows AAA-scheme Arrange-Act-Assert

• It is executed quickly

• It helps to locate a problem quickly

#CodeRage2019

Automatic Mocking

• Advantages
• Setup of your Test and the definition of expectations can be found directly

within the test and not somewhere else

• Less work and less errors than manual programming

• Disadvantages
• There might be limitations (IInvokable, Interfaces etc)

#CodeRage2019

Mocking Frameworks for Delphi

• For Delphi before 2009/XE2 there is just PascalMock
• PascalMock can check Calls and their Order and Parameters using Variant

• For actual Delphi Versions there are
• DSharp Mocks

• https://bitbucket.org/sglienke/dsharp/overview

• DelphiMock

• https://github.com/VSoftTechnologies/Delphi-Mocks

• Spring4D Mocks

• https://bitbucket.org/sglienke/spring4d/src/master/

#CodeRage2019

A short Spring4D history

• Open Source Library für Delphi

• Lizenz Apache License 2.0

• Started in 2010 on Google Code and changed later on to BitBucket

• Actually Stefan Glienke is maintaining the framework and pushing it
forward

• Plenty of stuff in it
• Dependency injection container

• generic interfaces for lists and collections

• Multicast events, Nullable types etc

• Since Version 1.2 containing a Mocking Framework

#CodeRage2019

Spring 4D Links

• GIT

• https://bitbucket.org/sglienke/spring4d.git

• WIKI

• https://bitbucket.org/sglienke/spring4d/wiki/Home

• API Documentation at DevJet Software

• http://www.devjetsoftware.com/docs/spring4d/

#CodeRage2019

Simple installation

• Download from BitBucket

• Unzip to destination directory

• Run Build.exe and select Delphi IDEs for install

• If you select Update Registry your Library Path is extended for you

#CodeRage2019

Mocking Framework in Spring 1.2

• Is realized with the help of generic records (Mock<T>) and Interfaces

• The mocks uses fluent interface technique for easy setup

• Simply include unit Spring.Mocking.pas in your uses clause

• Use the generic record Mock<T> for the interface you want to mock
out

• Use Mock<T>.Setup to define the behaviour

• You can mock out Interfaces compiled with {$M+} or inheriting
Iinvokable instead of IInterface

• If you mock out Classes only virtual methods are being mocked out

#CodeRage2019

Setting up a mock in the test

• Use the Setup-Interface to define the behavior
• .Setup.Returns for functions and results

• .Setup.Executes for procedures

• .Setup.Raises to throw exceptions

• Use „When“ after Setup to define the conditions for the behavior

• In Strict-Mode you can only call defined methods

• Use generic Record TArg (or global var Arg) to express special
parameter values (like IsAny, IsIn , IsNil etc)

#CodeRage2019

Controlling Mock Behavior

• TMockBehavior.Strict
• Mock throws an Exception if any Method is called that has not been setup

before

• TMockBehavior.Dynamic
• Mock accepts every call

• Returns default values for every call

#CodeRage2019

Checking Results

• Most other mocking frameworks use a verify method to compare
expectations with issued calls

• Spring4D uses a generic method Received for this purpose

• Received optionally accepts a Times argument to configure the
number of expected calls (Once, Never, AtLeastOnce, etc)

• If the calls in Received differ from the actual calls an exception is
raised

#CodeRage2019

Checking the Order of Calls

• Spring4D ignores the order if you check or define behavior via
Received or Setup

• If you want to check the order of calls, you have to use a
MockSequence Record

• Define a local variable of type MockSequence and use it as a
parameter for Setup

• If you are done with your test execution check the whole sequence
with a call to MockSequence.Completed

#CodeRage2019

www.embarcadero.com

More Information
• Landing page with Links to

articles, slides and source for
this video

• https://probucon.de/blog/20
19/12/coderage-2019/

• Bernd Ua

• Bernd.Ua@probucon.de

